
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—Most of program loops in micro-processors are
implemented with conditional branches that are the origin of
many micro-complexities like branch prediction. Intrinsically,
loops with constant iterations need not use conditional branches.
The Enclosed Loop Micro-Sequencer (ELMS) supports the
“FOR” loops with constant iterations at the machine code level,
which provides programming convenience and avoids micro-
complexities from the beginning. Another design goal of ELMS is
to be compact so that it can be easily embedded into FPGA
devices. Low resource consumption is achieved by separating
program flow control functions from the data processing
functions (i.e., the arithmetic logic unit (ALU) in most micro-
processors). The ELMS is able to run multi-layer nested-loop
programs without help from external arithmetic/logic resources
used for data processing. Since the data processing resources are
external and purely user defined, the ELMS is not a traditional
micro-processor, which is why it is called a “micro-sequencer”.
The ELMS is used in the digitizer FPGA for the Fermilab Beam
Loss Monitor system with expected performances.

Index Terms—Embedded System, Micro-processor, Micro-
sequencer, FPGA, IP core.

I. INTRODUCTION
PGA computing has been broadly used in high-
energy/nuclear physics experiments. Inside an FPGA, data

processing resources are flexibly defined by the users and
usually are application specific. The sequence control of the
data processing resources is an important issue in FPGA
design.

Sequence control is normally implemented using either
finite state machines (FSM) or embedded micro-processor
cores. When an input data item is to be fed through a fast and
very simple process, typically using a few clock cycles, FSM is
a suitable means of sequence control. FSM also responds to
external conditions promptly and accurately. However, the
sequence or program in the FSM is not easy to change and
debug, especially when irregularities exist in the sequence.
Also, the state machines occupy logic elements no matter how

Manuscript received May 15, 2006. This work was supported in part

Operated by Universities Research Association Inc. under Contract No. DE-
AC02-76CH03000 with the United States Department of Energy.

Jinyuan Wu, Craig Drennan, Alan Baumbaugh and Jonathan Lewis are
with Fermi National Accelerator Laboratory, Batavia, IL 60510 USA (phone:
630-840-8911; fax: 630-840-2950; e-mail: jywu168@ fnal.gov).

rarely they are used. So it is not economical to use FSM to
implement the occasionally-used sequences such as
initialization, communication channel establishment, etc.

Embedded or external micro-processor is another option of
sequence control. Today’s main stream micro-processors are
ALU (Arithmetic Logic Unit) oriented. The ALU, being the
center piece of the micro-processor, performs not only data
processing, but also program control functions. The ALU
oriented architectures have two drawbacks in FPGA
computation. (1) When a micro-processor core is embedded
in an FPGA, the ALU occupies large amount of silicon
resources. In instances where the application specific data
processing is implemented in dedicated logic for the sake of
speed, the ALU is barely utilized. (2) The program loops are
implemented using conditional branches, which are the
primary source of the micro-complexity of pipeline bubble,
branch penalty etc. that needs to be solved with further micro-
complexities such as branch prediction. The micro-processor
is a better choice only if a data item is to be processed with a
very complicate program, typically using thousands of clock
cycles.

When a data item is to be processed with a medium length

program, e.g., using a few hundreds clock cycles, the sequence
control needed is not too much more than a PC+ROM
structure (Fig. 1, left), which is the starting point of the
Enclosed Loop Micro-Sequencer (ELMS) (Fig. 1, right). The
primary difference between the ELMS and regular micro-
processor is that in the ELMS there are no data processing
resources like an ALU. The control signals for external data
processing resources turn on and off according to the sequence
stored in the ROM as the program counter (PC) increases.
Obviously, supporting logic must be added to control the PC.
In addition to the conditional branch logic that also exists in
micro-processors, loop and return logic with an internal stack
are added in the ELMS, so that it supports “FOR” loops with

ELMS--Enclosed Loop Micro-Sequencer for the
Fermilab Beam Loss Monitor System

(Abstract & Summary)
Jinyuan Wu, Craig Drennan, Alan Baumbaugh and Jonathan Lewis

F
Program
Counter

ROM
128x

36bits

Reset A

C
on

tro
lS

ig
na

ls

CLK

Program
Counter

ROM
128x

36bits

Reset A

C
on

tro
lS

ig
na

ls

CLK

Program
Counter

ROM
128x

36bits

A

Loop & Return Logic + Stack

Conditional Branch Logic

Reset

CLK C
on

tro
lS

ig
na

ls

Program
Counter

ROM
128x

36bits

A

Loop & Return Logic + Stack

Conditional Branch Logic

Reset

CLK C
on

tro
lS

ig
na

ls
Fig. 1. Micro-Sequencers: When the program counter increases, the control
signals changes states according to the sequence stored in the ROM. Left:
PC+ROM structure. Right: the Enclosed Loop Micro-Sequencer (ELMS).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

constant iterations at the machine code level and is self-
sufficient to run multi-layer nested-loop programs.

II. THE FERMILAB BEAM LOSS MONITOR SYSTEM

A. Overview
The new Fermilab Beam Loss Monitor (BLM) readout

system is designed to perform several tasks: to provide a
flexible and reliable abort system to protect Tevatron magnets;
to provide loss monitor data during normal operations of the
Tevatron, Main Injector and Booster; and to provide detailed
diagnostic loss histories when an abort happens. Beam losses
are detected using ion chambers.

The inputs from ion chambers are integrated for a short
period of time, typically 21 µs, and digitized to 16 bits. The
digital data are used to construct several sliding sums, which
are a measure of the integrated loss over a variety of time
scales up to 64k cycles. The abort request signals for each
channel are made in firmware by comparing these sums as well
as immediate measurement with thresholds. The system abort
signal is made by checking number of channels and types of
abort request signals.

B. The Digitizer Card
A Digitizer Card (DC) integrates, digitizes and processes 4

channels of ion chamber inputs. The block diagram for the
FPGA calculating the sliding sums is shown in Fig. 2.

A total of 16 sliding sums are to be kept in the FPGA. If all

sums were kept using accumulators, the FPGA would easily
consume several thousand logic elements, out of 5980 logic
elements in the Altera Cyclone EP1C6 device we use.

On the other hand, during 21 µs period, there are more than
1000 clock cycles at 50 MHz inside the FPGA. Clearly it is
more economical to calculate 16 sliding sums sequentially
using one set of data processing resources. The control signals
shown in Fig. 2 are turned on and off to perform various
functions by the “Seq128” block with an ELMS block inside.

III. THE ENCLOSED LOOP MICRO-SEQUENCER

A. Description:
Detailed block diagram of the ELMS is shown in Fig 3.

The program is stored in a 36-bit x 128-word ROM in our
example.

Both unconditional and conditional branches are supported

as in regular micro-processors. We have used a non-pipelined
design in our example. The Loop & Return Registers (LRR)
along with a 128-word stack are the primary elements designed
to support the constant iteration “FOR” loops.

B. Program Control Instructions
Some ELMS instructions are shown in Table I.

The ELMS instructions are 36-bit words. When any of the

bits 32-35 is set, the word represents a program control
instruction. Especially, when bit 33 is set, the instruction starts
a FOR loop in which the bit fields BckA, EndA and cnt are
pushed into corresponding LRR/stack. The PC is incremented
until reaching EndA, and then it is set back to BckA. This
continues for (cnt+1) passes. Then the stack is popped on the
last pass of the loop.

The CALL instruction is implemented as a combination of
the FOR and JMP instructions with cnt automatically set =1.
At the CALL instruction, the PC jumps to desA while BckA
and EndA are pushed into the LRR/stack. When PC reaches
EndA or when a RTN instruction is seen, the PC jumps back to
BckA and the stack is popped. Note that in addition to a
regular return instruction, the return point from the subroutine
is also pre-defined to be EndA, which allows an alternative
means of subroutine return that provides extra convenience.

Multi-layer FOR or CALL loops can be nested. When an
inner layer starts, the parameters of the unfinished outer loop
are pushed into the stack, which allows the outer loop to
continue after the inner loop finishes. Up to 128 layers of
loops can be nested.

TABLE I
PROGRAM CONTROL INSTRUCTIONS

35 34 33 32 31:24 23:16 15:8 7:0 Notes
JMP 1 0 0 0 desA Unconditional go to desA
JMPIF 0 0 0 1 desA Conditional go to desA
FOR 0 0 1 0 BckA EndA cnt Repeat cnt+1 times form BckA to EndA
CALL 1 0 1 0 BckA EndA desA Go to desA, upon PC=EndA, go BckA
RTN 0 1 0 0 Return, pop stack

0 0 0 0 X X X X User instructions

ROM
128x

36bits

+1

CondJMP

PC

Reset

Loop & Return
Registers

+ Stack (128 words)

Compare

RTNJMPIF

CNT

endA

bckA

Push
Pop

LoopBack

DEC

RTN

LastPass

LoopBack = DEC =
(PC==endA) && (CNT!=0)

LastPass =
(PC==endA) && (CNT==1)

User
Control
Signals

desA

JMP

0x04

RUNat04 cnt EndA BckA

ROM
128x

36bits

+1

CondJMP

PC

Reset

Loop & Return
Registers

+ Stack (128 words)

Compare

RTNJMPIF

CNT

endA

bckA

Push
Pop

LoopBack

DEC

RTN

LastPass

LoopBack = DEC =
(PC==endA) && (CNT!=0)

LastPass =
(PC==endA) && (CNT==1)

User
Control
Signals

desA

JMP

0x04

RUNat04 cnt EndA BckA

Fig. 3. Detailed block diagram of the Enclosed Loop Micro-Sequencer
(ELMS): The Loop & Return Registers + Stack block provides support of
the “FOR” loop with constant iterations.

A>B

SelSumMQQShift

SelInitValue

SelSumMQQ

ADLdSumMQH

LdSumMQ
CH0
CH1
CH2
CH3 SelQCH

SubSumD

sloadSumD

EnSumD

Σ

SelTailSqch

SelPed

EnQCH Sum
Keeping

RAM

Sum
Readout

RAM

Threshold
RAM

Sel64HI

WRsumX

SelIntgX

Over-
Threshold
Outputs
4 Ch.
X 4 Types

EnQLen

EnQSqch

EnQPedL

EnQPedH

EnQTailSqch

SelQSqch

External
Circular
Buffer

PT+LEN

Circular
Buffer
Pointer

Seq128
SUMTYP,
CH & other
Control
Signals

Parameter
RAM

SelConstH

WRConstX

SelSumLengths

LdModeSelXIncCirBufPT

SetType, SetCh,
IncType, IncCh,
ChkJMPcond

ChkSumsOT
ChkIntgOT

LatchIntg
EnSumsMemA
SelCurrAddr
SumsMemCS
SumsMemOE
SumsMemWE

Other Commands

LdDAC_OutX,
OnLatchX, WrDACs
EndCycle

A>B

SelSumMQQShift

SelInitValue

SelSumMQQ

ADLdSumMQH

LdSumMQ
CH0
CH1
CH2
CH3 SelQCH

SubSumD

sloadSumD

EnSumD

Σ

SelTailSqch

SelPed

EnQCH Sum
Keeping

RAM

Sum
Keeping

RAM

Sum
Readout

RAM

Sum
Readout

RAM

Threshold
RAM

Threshold
RAM

Sel64HI

WRsumX

SelIntgX

Over-
Threshold
Outputs
4 Ch.
X 4 Types

EnQLen

EnQSqch

EnQPedL

EnQPedH

EnQTailSqch

SelQSqch

External
Circular
Buffer

PT+LEN

Circular
Buffer
Pointer

Seq128
SUMTYP,
CH & other
Control
Signals

Parameter
RAM

Parameter
RAM

SelConstH

WRConstX

SelSumLengths

LdModeSelXIncCirBufPT

SetType, SetCh,
IncType, IncCh,
ChkJMPcond

ChkSumsOT
ChkIntgOT

LatchIntg
EnSumsMemA
SelCurrAddr
SumsMemCS
SumsMemOE
SumsMemWE

Other Commands

LdDAC_OutX,
OnLatchX, WrDACs
EndCycle

Fig. 2. The partial block diagram of the SUM03 FPGA

